eClinical Technology and Industy News

SQZ Biotechnologies Announces Generation of Dopaminergic Neurons from Human Pluripotent Stem Cells Through Single-Step Delivery of Six Cell-Fate Encoding RNAs

Pre-Clinical Research Could Lead to Rapid Development of Dopamine-Producing Neurons; Part of Company’s NIH-Funded Program Seeking Scalable Cell Replacement Therapy Approaches for Parkinson’s Disease

Use of Non-Viral, Self-Amplifying RNA Enhanced and Lengthened Transcription Factor Expression, Driving the Signaling Required for Dopamine-Producing Neuron Development

Findings Presented at 2022 International Society for Stem Cell Research Annual Meeting

Excerpt from the Press Release:

WATERTOWN, Mass.–(BUSINESS WIRE)–SQZ Biotechnologies Company (NYSE: SQZ), focused on unlocking the full potential of cell therapies for multiple therapeutic areas, presented preclinical regenerative medicine data showing that the company’s proprietary Cell Squeeze® technology can effectively generate dopaminergic (DA) neurons from human-induced pluripotent stem cells (iPSCs) through the single-step delivery of six RNA that encode for specific fate-determining transcription factors. The inclusion of non-viral, self-amplifying RNA in particular was shown to enhance and lengthen transcription factor expression and support DA neuron development. The new findings build upon the company’s recent regenerative medicine research presentations and are aligned with the company’s NIH-funded effort to generate cell replacement therapies for neurodegenerative conditions like Parkinson’s disease. The research was presented at the 2022 International Society for Stem Cell Research (ISSCR) annual meeting.

“Effective cell replacement therapies for diseases including Parkinson’s disease could have significant benefit for patients,” said Jonathan Gilbert, Ph.D., Vice President and Head of Exploratory Research at SQZ Biotechnologies. “Our early preclinical work demonstrates that a single-step delivery of six RNA into iPSCs using the Cell Squeeze® platform can effectively generate dopaminergic neurons. Our continued development of these cell engineering capabilities could potentially enable the creation of future cell replacement therapies.”

While other methods of differentiating iPSCs into specific cell types may often include a lengthy and variable process, the non-viral Cell Squeeze® technology is designed to generate reprogrammed cells through the delivery of fate-determining transcription factors while preserving cell health and limiting adverse effects on baseline gene expression. Cell Squeeze® technology may also allow for control of the timing, intensity, and combination of transcription factor expression to generate high-quality and functional cell products.

Major Findings from Cell Reprogramming Research Presented at ISSCR:

  • Generation of Dopaminergic Neurons: By combining and delivering Ascl1 saRNA, a key neuronal transcription factor, with five mRNA transcription factors, SQZ scientists were able to differentiate iPSCs into dopaminergic neurons

Click the button below to read the entire Press Release:

Continue Reading The Press Release

Discover What Sets TrialStat Apart From Ordinary EDC Platforms

Click the image or button below to explore our eClinical Suite Platform and discover what sets TrialStat apart from competing EDC platforms.

Request Your Demo Today!

From rapid database build through database lock, we deliver consistent quality on-time and on-budget. Ready to upgrade your eClinical toolkit?

Archives