Elicio Therapeutics Announces Publication of Preclinical Data in Science Translational Medicine Demonstrating the AMP Platform Promotes Uptake of Intranasal Vaccine in the Mucosa Amplifying Immune Response
- AMP-protein-based vaccines administered intranasally to mice and nonhuman primates (NHPs) were transported across the epithelial lining to the nasal-associated lymphoid tissue (NALT) and persisted in the nasal mucosa eliciting immune responses at both local and distal mucosal sites
- Intranasal immunization with AMP-conjugated HIV Env gp120 or SARS-CoV-2 receptor binding domain (RBD) proteins elicited 100- to 1000-fold higher antigen-specific IgG and IgA titers in the serum, upper and lower respiratory mucosa, and distal genitourinary mucosae of mice, and about 10-fold higher antigen specific responses in serum and nasal mucosa of NHPs compared to unmodified protein
- Data support further development of AMP-protein-based intranasal vaccines for immunogens such as the SARS-CoV-2 receptor binding domain and the HIV envelop proteins, among others
Excerpt from the Press Release:
BOSTON, Oct. 04, 2022 (GLOBE NEWSWIRE) — Elicio Therapeutics, a clinical-stage biotechnology company developing a pipeline of novel immunotherapies for the treatment of cancer and other diseases, today announced the publication of preclinical data from the research laboratory of Dr. Darrell Irvine at the Massachusetts Institute of Technology (MIT), demonstrating Elicio’s Amphiphile (AMP) platform conjugated to protein antigens promotes uptake in the nasal mucosa and amplifies immune responses after intranasal immunization. Immunization through airway surfaces has proven challenging due to poor vaccine uptake across these linings. The data presented here represents a promising strategy to promote mucosal immunity against HIV, SARS-CoV-2, and other infectious diseases. The data was published in Science Translational Medicine and can be accessed here.
“Delivery of vaccine components across mucosal barriers has been a major challenge for mucosal vaccine development. This data demonstrates that AMP-modification can improve vaccine uptake across the nasal mucosa via interactions with albumin and the neonatal Fc receptor known as the “mucosal gateway.” This enables higher concentrations of antigen in nasal associated lymphoid tissue – a specialized structure which organizes the immune response adjacent to the nasal passages,” said Darrell J. Irvine, Ph.D. inventor of the AMP technology, a Howard Hughes Medical Institute investigator and professor at MIT. “The findings are encouraging for the translational potential of this approach to induce antibodies in a variety of mucosal sites after intranasal immunization.”
Peter DeMuth, Ph.D., Elicio’s Chief Scientific Officer, added, “This is a fantastic new application of the platform with a lot of promise for new infectious disease vaccines intended to generate immunity at mucosal surfaces. These mucosal responses are important for protection against pathogens that typically invade mucosal sites in the respiratory or genitourinary tract and could block infection completely or reduce the amount of pathogen in mucosal sites, decreasing the risk of spread to others. The study demonstrates a new mechanism for AMP vaccines whereby small proteins modified with AMP can be more effectively delivered to the nasal associated lymph tissues. AMP-vaccines delivered this way induced stronger, more durable mucosal and circulating antibody responses in mice and non-human primates.”
Click the button below to read the entire Press Release:
Discover What Sets TrialStat Apart From Ordinary EDC Platforms
Click the image or button below to explore our eClinical Suite Platform and discover what sets TrialStat apart from competing EDC platforms.
Request Your Demo Today!
From rapid database build through database lock, we deliver consistent quality on-time and on-budget. Ready to upgrade your eClinical toolkit?